removing temperature feature
[labortage2013badge.git] / firmware / main.c
1 /* Name: main.c
2  * Project: hid-custom-rq example
3  * Author: Christian Starkjohann
4  * Creation Date: 2008-04-07
5  * Tabsize: 4
6  * Copyright: (c) 2008 by OBJECTIVE DEVELOPMENT Software GmbH
7  * License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
8  * This Revision: $Id: main.c 692 2008-11-07 15:07:40Z cs $
9  */
10
11 /*
12 This example should run on most AVRs with only little changes. No special
13 hardware resources except INT0 are used. You may have to change usbconfig.h for
14 different I/O pins for USB. Please note that USB D+ must be the INT0 pin, or
15 at least be connected to INT0 as well.
16 We assume that an LED is connected to port B bit 0. If you connect it to a
17 different port or bit, change the macros below:
18 */
19 #define BUTTON_PIN 4
20
21 #define SIMPLE_COUNTER 1
22
23 #include <stdint.h>
24 #include <string.h>
25 #include <stdbool.h>
26
27 #include <avr/io.h>
28 #include <avr/wdt.h>
29 #include <avr/eeprom.h>
30 #include <avr/interrupt.h>  /* for sei() */
31 #include <util/delay.h>     /* for _delay_ms() */
32
33 #include <avr/pgmspace.h>   /* required by usbdrv.h */
34 #include "usbdrv.h"
35 #include "oddebug.h"        /* This is also an example for using debug macros */
36 #include "requests.h"       /* The custom request numbers we use */
37 #include "special_functions.h"
38 #include "hotp.h"
39 #if !SIMPLE_COUNTER
40 #include "percnt2.h"
41 #endif
42 #include "usb_keyboard_codes.h"
43
44 /* ------------------------------------------------------------------------- */
45 /* ----------------------------- USB interface ----------------------------- */
46 /* ------------------------------------------------------------------------- */
47
48 #define STATE_WAIT 0
49 #define STATE_SEND_KEY 1
50 #define STATE_RELEASE_KEY 2
51 #define STATE_NEXT 3
52
53 PROGMEM const char usbHidReportDescriptor[USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH] = {
54     0x05, 0x01,                    // USAGE_PAGE (Generic Desktop)
55     0x09, 0x06,                    // USAGE (Keyboard)
56     0xa1, 0x01,                    // COLLECTION (Application)
57     0x75, 0x01,                    //   REPORT_SIZE (1)
58     0x95, 0x08,                    //   REPORT_COUNT (8)
59     0x05, 0x07,                    //   USAGE_PAGE (Keyboard)(Key Codes)
60     0x19, 0xe0,                    //   USAGE_MINIMUM (Keyboard LeftControl)(224)
61     0x29, 0xe7,                    //   USAGE_MAXIMUM (Keyboard Right GUI)(231)
62     0x15, 0x00,                    //   LOGICAL_MINIMUM (0)
63     0x25, 0x01,                    //   LOGICAL_MAXIMUM (1)
64     0x81, 0x02,                    //   INPUT (Data,Var,Abs) ; Modifier byte
65     0x95, 0x01,                    //   REPORT_COUNT (1)
66     0x75, 0x08,                    //   REPORT_SIZE (8)
67     0x81, 0x03,                    //   INPUT (Cnst,Var,Abs) ; Reserved byte
68     0x95, 0x05,                    //   REPORT_COUNT (5)
69     0x75, 0x01,                    //   REPORT_SIZE (1)
70     0x05, 0x08,                    //   USAGE_PAGE (LEDs)
71     0x19, 0x01,                    //   USAGE_MINIMUM (Num Lock)
72     0x29, 0x05,                    //   USAGE_MAXIMUM (Kana)
73     0x91, 0x02,                    //   OUTPUT (Data,Var,Abs) ; LED report
74     0x95, 0x01,                    //   REPORT_COUNT (1)
75     0x75, 0x03,                    //   REPORT_SIZE (3)
76     0x91, 0x03,                    //   OUTPUT (Cnst,Var,Abs) ; LED report padding
77     0x95, 0x06,                    //   REPORT_COUNT (6)
78     0x75, 0x08,                    //   REPORT_SIZE (8)
79     0x15, 0x00,                    //   LOGICAL_MINIMUM (0)
80     0x25, 0x65,                    //   LOGICAL_MAXIMUM (101)
81     0x05, 0x07,                    //   USAGE_PAGE (Keyboard)(Key Codes)
82     0x19, 0x00,                    //   USAGE_MINIMUM (Reserved (no event indicated))(0)
83     0x29, 0x65,                    //   USAGE_MAXIMUM (Keyboard Application)(101)
84     0x81, 0x00,                    //   INPUT (Data,Ary,Abs)
85     0xc0                           // END_COLLECTION
86 };
87
88 static uint16_t secret_length_ee EEMEM = 0;
89 static uint8_t  secret_ee[32] EEMEM;
90 static uint8_t  reset_counter_ee EEMEM = 0;
91 static uint8_t  digits_ee EEMEM = 8;
92
93 #if SIMPLE_COUNTER
94 static uint32_t counter_ee EEMEM = 0;
95 #endif
96
97 static uint8_t dbg_buffer[8];
98 static uint8_t secret[32];
99 static uint16_t secret_length_b;
100 static char token[10];
101
102 #define UNI_BUFFER_SIZE 16
103
104 static union __attribute__((packed)) {
105         uint8_t  w8[UNI_BUFFER_SIZE];
106         uint16_t w16[UNI_BUFFER_SIZE/2];
107         uint32_t w32[UNI_BUFFER_SIZE/4];
108         void*    ptr[UNI_BUFFER_SIZE/sizeof(void*)];
109 } uni_buffer;
110
111 static uint8_t uni_buffer_fill;
112 static uint8_t current_command;
113
114 typedef struct {
115     uint8_t modifier;
116     uint8_t reserved;
117     uint8_t keycode[6];
118 } keyboard_report_t;
119
120 static keyboard_report_t keyboard_report; /* report sent to the host */
121 static uchar idleRate;  /* in 4 ms units */
122 static uchar key_state = STATE_WAIT;
123 volatile static uchar LED_state = 0xff;
124 /* ------------------------------------------------------------------------- */
125
126 static
127 void memory_clean(void) {
128     memset(secret, 0, 32);
129     secret_length_b = 0;
130 }
131
132 #define NO_CHECK 1
133
134 static
135 uint8_t secret_set(void){
136 #if !NO_CHECK
137     uint8_t r;
138     union {
139         uint8_t w8[32];
140         uint16_t w16[16];
141     } read_back;
142 #endif
143     const uint8_t length_B = (secret_length_b + 7) / 8;
144
145     eeprom_busy_wait();
146     eeprom_write_block(secret, secret_ee, length_B);
147 #if !NO_CHECK
148     eeprom_busy_wait();
149     eeprom_read_block(read_back.w8, secret_ee, length_B);
150     r = memcmp(secret, read_back.w8, length_B);
151     memory_clean();
152     memset(read_back.w8, 0, 32);
153     if (r) {
154         return 1;
155     }
156 #endif
157     eeprom_busy_wait();
158     eeprom_write_word(&secret_length_ee, secret_length_b);
159 #if !NO_CHECK
160     eeprom_busy_wait();
161     r = eeprom_read_word(&secret_length_ee) == secret_length_b;
162     memory_clean();
163     *read_back.w16 = 0;
164     if (!r) {
165         return 1;
166     }
167 #else
168     memory_clean();
169 #endif
170
171     return 0;
172 }
173
174 static
175 void counter_inc(void){
176 #if SIMPLE_COUNTER
177     uint32_t t;
178     eeprom_busy_wait();
179     t = eeprom_read_dword(&counter_ee);
180     eeprom_busy_wait();
181     eeprom_write_dword(&counter_ee, t + 1);
182 #else
183     percnt_inc(0);
184 #endif
185 }
186
187 static
188 void counter_reset(void) {
189     uint8_t reset_counter;
190     eeprom_busy_wait();
191     reset_counter = eeprom_read_byte(&reset_counter_ee);
192 #if SIMPLE_COUNTER
193     eeprom_busy_wait();
194     eeprom_write_dword(&counter_ee, 0);
195 #else
196     percnt_reset(0);
197 #endif
198     eeprom_busy_wait();
199     eeprom_write_byte(&reset_counter_ee, reset_counter + 1);
200 }
201
202 static
203 void counter_init(void) {
204 #if !SIMPLE_COUNTER
205     eeprom_busy_wait();
206     if (eeprom_read_byte(&reset_counter_ee) == 0) {
207         counter_reset();
208     }
209     percnt_init(0);
210 #endif
211 }
212
213 static
214 void token_generate(void) {
215     counter_inc();
216     eeprom_busy_wait();
217     eeprom_read_block(secret, secret_ee, 32);
218     eeprom_busy_wait();
219 #if SIMPLE_COUNTER
220     hotp(token, secret, eeprom_read_word(&secret_length_ee), eeprom_read_dword(&counter_ee), eeprom_read_byte(&digits_ee));
221 #else
222     hotp(token, secret, eeprom_read_word(&secret_length_ee), percnt_get(0), eeprom_read_byte(&digits_ee));
223 #endif
224     memory_clean();
225 }
226
227
228 static
229 void buildReport(uchar send_key) {
230     keyboard_report.modifier = 0;
231
232     switch (send_key) {
233     case 'A' ... 'Z':
234         keyboard_report.modifier = MOD_SHIFT_LEFT;
235         keyboard_report.keycode[0] = KEY_A + (send_key-'A');
236         break;
237     case 'a' ... 'z':
238         keyboard_report.keycode[0] = KEY_A + (send_key-'a');
239         break;
240     case '1' ... '9':
241         keyboard_report.keycode[0] = KEY_1 + (send_key-'1');
242         break;
243     case '0':
244         keyboard_report.keycode[0] = KEY_0;
245         break;
246     default:
247         keyboard_report.keycode[0] = 0;
248     }
249 }
250
251 static
252 int8_t button_get_debounced(volatile uint8_t debounce_count) {
253     uint8_t v;
254     v = PINB & _BV(BUTTON_PIN);
255     while (debounce_count-- && v == (PINB & _BV(BUTTON_PIN))) {
256         ;
257     }
258     if (debounce_count) {
259         return -1;
260     }
261     return v ? 0 : 1;
262 }
263
264 usbMsgLen_t usbFunctionSetup(uchar data[8])
265 {
266         usbRequest_t    *rq = (usbRequest_t *)data;
267         if ((rq->bmRequestType & USBRQ_TYPE_MASK) == USBRQ_TYPE_CLASS) {    /* class request type */
268             switch(rq->bRequest) {
269         case USBRQ_HID_GET_REPORT: // send "no keys pressed" if asked here
270             // wValue: ReportType (highbyte), ReportID (lowbyte)
271             usbMsgPtr = (void *)&keyboard_report; // we only have this one
272             keyboard_report.modifier = 0;
273             keyboard_report.keycode[0] = 0;
274             return sizeof(keyboard_report);
275         case USBRQ_HID_SET_REPORT: // if wLength == 1, should be LED state
276             if (rq->wLength.word == 1) {
277                 current_command = LED_WRITE;
278                 return USB_NO_MSG;
279             }
280             return 0;
281         case USBRQ_HID_GET_IDLE: // send idle rate to PC as required by spec
282             usbMsgPtr = &idleRate;
283             return 1;
284         case USBRQ_HID_SET_IDLE: // save idle rate as required by spec
285             idleRate = rq->wValue.bytes[1];
286             return 0;
287         }
288     }
289     if ((rq->bmRequestType & USBRQ_TYPE_MASK) == USBRQ_TYPE_VENDOR) {
290                 current_command = rq->bRequest;
291         switch(rq->bRequest)
292                 {
293         case CUSTOM_RQ_SET_SECRET:
294             secret_length_b = rq->wValue.word;
295             if (secret_length_b > 256) {
296                 secret_length_b = 256;
297             }
298             uni_buffer.w8[0] = 0;
299             return USB_NO_MSG;
300         case CUSTOM_RQ_INC_COUNTER:
301             counter_inc();
302             return 0;
303         case CUSTOM_RQ_GET_COUNTER:
304 #if SIMPLE_COUNTER
305             eeprom_busy_wait();
306             uni_buffer.w32[0] = eeprom_read_dword(&counter_ee);
307 #else
308             uni_buffer.w32[0] = percnt_get(0);
309 #endif
310             usbMsgPtr = (usbMsgPtr_t)uni_buffer.w32;
311             return 4;
312         case CUSTOM_RQ_RESET_COUNTER:
313             counter_reset();
314             return 0;
315         case CUSTOM_RQ_GET_RESET_COUNTER:
316             eeprom_busy_wait();
317             uni_buffer.w8[0] = eeprom_read_byte(&reset_counter_ee);
318             usbMsgPtr = uni_buffer.w8;
319             return 1;
320         case CUSTOM_RQ_SET_DIGITS:
321             if (rq->wValue.bytes[0] > 9) {
322                 rq->wValue.bytes[0] = 9;
323             }
324             eeprom_busy_wait();
325             eeprom_write_byte(&digits_ee, rq->wValue.bytes[0]);
326             return 0;
327         case CUSTOM_RQ_GET_DIGITS:
328             eeprom_busy_wait();
329             uni_buffer.w8[0] = eeprom_read_byte(&digits_ee);
330             usbMsgPtr = uni_buffer.w8;
331             return 1;
332         case CUSTOM_RQ_GET_TOKEN:
333             token_generate();
334             usbMsgPtr = (usbMsgPtr_t)token;
335             return strlen(token);
336
337         case CUSTOM_RQ_PRESS_BUTTON:
338             key_state = STATE_SEND_KEY;
339             return 0;
340         case CUSTOM_RQ_CLR_DBG:
341             memset(dbg_buffer, 0, sizeof(dbg_buffer));
342             return 0;
343                 case CUSTOM_RQ_SET_DBG:
344                         return USB_NO_MSG;
345                 case CUSTOM_RQ_GET_DBG:{
346                         usbMsgLen_t len = 8;
347                         if(len > rq->wLength.word){
348                                 len = rq->wLength.word;
349                         }
350                         usbMsgPtr = dbg_buffer;
351                         return len;
352                 }
353                 case CUSTOM_RQ_READ_MEM:
354                         usbMsgPtr = (uchar*)rq->wValue.word;
355                         return rq->wLength.word;
356                 case CUSTOM_RQ_WRITE_MEM:
357                 case CUSTOM_RQ_EXEC_SPM:
358 /*                      uni_buffer_fill = 4;
359                         uni_buffer.w16[0] = rq->wValue.word;
360                         uni_buffer.w16[1] = rq->wLength.word;
361                         return USB_NO_MSG;
362 */              case CUSTOM_RQ_READ_FLASH:
363                         uni_buffer.w16[0] = rq->wValue.word;
364                         uni_buffer.w16[1] = rq->wLength.word;
365             uni_buffer_fill = 4;
366                         return USB_NO_MSG;
367                 case CUSTOM_RQ_RESET:
368                         soft_reset((uint8_t)(rq->wValue.word));
369                         break;
370                 case CUSTOM_RQ_READ_BUTTON:
371                         uni_buffer.w8[0] = button_get_debounced(25);
372                         usbMsgPtr = uni_buffer.w8;
373                         return 1;
374                 }
375     }
376
377     return 0;   /* default for not implemented requests: return no data back to host */
378 }
379
380
381 uchar usbFunctionWrite(uchar *data, uchar len)
382 {
383         switch(current_command){
384
385         case LED_WRITE:
386             if (data[0] != LED_state)
387                 LED_state = data[0];
388             return 1; // Data read, not expecting more
389         case CUSTOM_RQ_SET_SECRET:
390         {
391             if (uni_buffer.w8[0] < (secret_length_b + 7) / 8) {
392                 memcpy(&secret[uni_buffer.w8[0]], data, len);
393                 uni_buffer.w8[0] += len;
394             }
395             if (uni_buffer.w8[0] >= (secret_length_b + 7) / 8) {
396                 secret_set();
397                 return 1;
398             }
399             return 0;
400         }
401         case CUSTOM_RQ_SET_DBG:
402                 if(len > sizeof(dbg_buffer)){
403                         len = sizeof(dbg_buffer);
404                 }
405                 memcpy(dbg_buffer, data, len);
406                 return 1;
407         case CUSTOM_RQ_WRITE_MEM:
408                 memcpy(uni_buffer.ptr[0], data, len);
409                 uni_buffer.w16[0] += len;
410                 return !(uni_buffer.w16[1] -= len);
411         case CUSTOM_RQ_EXEC_SPM:
412                 if(uni_buffer_fill < 8){
413                         uint8_t l = 8 - uni_buffer_fill;
414                         if(len<l){
415                                 len = l;
416                         }
417                         memcpy(&(uni_buffer.w8[uni_buffer_fill]), data, len);
418                         uni_buffer_fill += len;
419                         return 0;
420                 }
421                 uni_buffer.w16[1] -= len;
422                 if (uni_buffer.w16[1] > 8) {
423                         memcpy(uni_buffer.ptr[0], data, len);
424                         uni_buffer.w16[0] += len;
425                         return 0;
426                 } else {
427                         memcpy(&(uni_buffer.w8[uni_buffer_fill]), data, len);
428                         exec_spm(uni_buffer.w16[2], uni_buffer.w16[3], uni_buffer.ptr[0], data, len);
429                         return 1;
430                 }
431         default:
432                 return 1;
433         }
434         return 0;
435 }
436 uchar usbFunctionRead(uchar *data, uchar len){
437         uchar ret = len;
438         switch(current_command){
439         case CUSTOM_RQ_READ_FLASH:
440                 while(len--){
441                         *data++ = pgm_read_byte((uni_buffer.w16[0])++);
442                 }
443                 return ret;
444         default:
445                 break;
446         }
447         return 0;
448 }
449
450 static void calibrateOscillator(void)
451 {
452 uchar       step = 128;
453 uchar       trialValue = 0, optimumValue;
454 int         x, optimumDev, targetValue = (unsigned)(1499 * (double)F_CPU / 10.5e6 + 0.5);
455  
456     /* do a binary search: */
457     do {
458         OSCCAL = trialValue + step;
459         x = usbMeasureFrameLength();    // proportional to current real frequency
460         if(x < targetValue)             // frequency still too low
461             trialValue += step;
462         step >>= 1;
463     } while(step > 0);
464     /* We have a precision of +/- 1 for optimum OSCCAL here */
465     /* now do a neighborhood search for optimum value */
466     optimumValue = trialValue;
467     optimumDev = x; // this is certainly far away from optimum
468     for (OSCCAL = trialValue - 1; OSCCAL <= trialValue + 1; OSCCAL++){
469         x = usbMeasureFrameLength() - targetValue;
470         if (x < 0)
471             x = -x;
472         if (x < optimumDev) {
473             optimumDev = x;
474             optimumValue = OSCCAL;
475         }
476     }
477     OSCCAL = optimumValue;
478 }
479  
480
481 void usbEventResetReady(void)
482 {
483     cli();  // usbMeasureFrameLength() counts CPU cycles, so disable interrupts.
484     calibrateOscillator();
485     sei();
486 // we never read the value from eeprom so this causes only degradation of eeprom
487 //    eeprom_write_byte(0, OSCCAL);   // store the calibrated value in EEPROM
488 }
489
490 /* ------------------------------------------------------------------------- */
491
492 int main(void)
493 {
494         size_t idx = 0;
495         int8_t i = 0, last_stable_button_state = 0;
496
497     wdt_enable(WDTO_1S);
498     /* Even if you don't use the watchdog, turn it off here. On newer devices,
499      * the status of the watchdog (on/off, period) is PRESERVED OVER RESET!
500      */
501     /* RESET status: all port bits are inputs without pull-up.
502      * That's the way we need D+ and D-. Therefore we don't need any
503      * additional hardware initialization.
504      */
505
506     DDRB &= ~_BV(BUTTON_PIN); /* make button pin input */
507     PORTB |= _BV(BUTTON_PIN); /* turn on pull-up resistor */
508     counter_init();
509     usbInit();
510     usbDeviceDisconnect();  /* enforce re-enumeration, do this while interrupts are disabled! */
511     while(--i){             /* fake USB disconnect for ~512 ms */
512         wdt_reset();
513         _delay_ms(2);
514     }
515     usbDeviceConnect();
516         
517     sei();
518
519     for(;;){                /* main event loop */
520         wdt_reset();
521         usbPoll();
522
523         i = button_get_debounced(25);
524         if (i != -1) {
525             if (last_stable_button_state == 0 && i == 1) {
526                 key_state = STATE_SEND_KEY;
527             }
528             last_stable_button_state = i;
529         }
530
531         if(usbInterruptIsReady() && key_state != STATE_WAIT){
532             switch(key_state) {
533             case STATE_SEND_KEY:
534                 buildReport(token[idx]);
535                 key_state = STATE_RELEASE_KEY; // release next
536                 break;
537             case STATE_RELEASE_KEY:
538                 buildReport(0);
539                 ++idx;
540                 if (token[idx] == '\0') {
541                     idx = 0;
542                     key_state = STATE_WAIT;
543                 } else {
544                     key_state = STATE_SEND_KEY;
545                 }
546                 break;
547             default:
548                 key_state = STATE_WAIT; // should not happen
549             }
550                         // start sending
551             usbSetInterrupt((void *)&keyboard_report, sizeof(keyboard_report));
552
553         }
554
555     }
556     return 0;
557 }
558
559 /* ------------------------------------------------------------------------- */