]> git.cryptolib.org Git - avr-crypto-lib.git/blob - sha1/sha1.c
some adjustments for debugging
[avr-crypto-lib.git] / sha1 / sha1.c
1 /* sha1.c */
2 /*
3     This file is part of the AVR-Crypto-Lib.
4     Copyright (C) 2008, 2009  Daniel Otte (daniel.otte@rub.de)
5
6     This program is free software: you can redistribute it and/or modify
7     it under the terms of the GNU General Public License as published by
8     the Free Software Foundation, either version 3 of the License, or
9     (at your option) any later version.
10
11     This program is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14     GNU General Public License for more details.
15
16     You should have received a copy of the GNU General Public License
17     along with this program.  If not, see <http://www.gnu.org/licenses/>.
18 */
19 /**
20  * \file        sha1.c
21  * \author      Daniel Otte
22  * \date        2006-10-08
23  * \license GPLv3 or later
24  * \brief SHA-1 implementation.
25  *
26  */
27
28 #include <string.h> /* memcpy & co */
29 #include <stdint.h>
30 #include "config.h"
31 #include "debug.h"
32 #include "sha1.h"
33
34 #ifdef DEBUG
35 #  undef DEBUG
36 #endif
37
38
39 #define LITTLE_ENDIAN
40
41 /********************************************************************************************************/
42
43 /**
44  * \brief initialises given SHA-1 context
45  *
46  */
47 void sha1_init(sha1_ctx_t *state){
48         DEBUG_S("\r\nSHA1_INIT");
49         state->h[0] = 0x67452301;
50         state->h[1] = 0xefcdab89;
51         state->h[2] = 0x98badcfe;
52         state->h[3] = 0x10325476;
53         state->h[4] = 0xc3d2e1f0;
54         state->length = 0;
55 }
56
57 /********************************************************************************************************/
58 /* some helping functions */
59 uint32_t rotl32(uint32_t n, uint8_t bits){
60         return ((n<<bits) | (n>>(32-bits)));
61 }
62
63 uint32_t change_endian32(uint32_t x){
64         return (((x)<<24) | ((x)>>24) | (((x)& 0x0000ff00)<<8) | (((x)& 0x00ff0000)>>8));
65 }
66
67
68 /* three SHA-1 inner functions */
69 uint32_t ch(uint32_t x, uint32_t y, uint32_t z){
70         DEBUG_S("\r\nCH");
71         return ((x&y)^((~x)&z));
72 }
73
74 uint32_t maj(uint32_t x, uint32_t y, uint32_t z){
75         DEBUG_S("\r\nMAJ");
76         return ((x&y)^(x&z)^(y&z));
77 }
78
79 uint32_t parity(uint32_t x, uint32_t y, uint32_t z){
80         DEBUG_S("\r\nPARITY");
81         return ((x^y)^z);
82 }
83
84 /********************************************************************************************************/
85 /**
86  * \brief "add" a block to the hash
87  * This is the core function of the hash algorithm. To understand how it's working
88  * and what thoese variables do, take a look at FIPS-182. This is an "alternativ" implementation
89  */
90
91 #define MASK 0x0000000f
92
93 typedef uint32_t (*pf_t)(uint32_t x, uint32_t y, uint32_t z);
94
95 void sha1_nextBlock (sha1_ctx_t *state, const void* block){
96         uint32_t a[5];
97         uint32_t w[16];
98         uint32_t temp;
99         uint8_t t,s;
100         pf_t f[] = {ch,parity,maj,parity};
101         uint32_t k[4]={ 0x5a827999,
102                                         0x6ed9eba1,
103                                         0x8f1bbcdc,
104                                         0xca62c1d6};
105
106         /* load the w array (changing the endian and so) */
107         for(t=0; t<16; ++t){
108                 w[t] = change_endian32(((uint32_t*)block)[t]);
109         }
110
111         uint8_t dbgi;
112         for(dbgi=0; dbgi<16; ++dbgi){
113                 DEBUG_S("\n\rBlock:");
114                 DEBUG_B(dbgi);
115                 DEBUG_C(':');
116                 #ifdef DEBUG
117                         cli_hexdump(&(w[dbgi]) ,4);
118                 #endif
119         }
120
121
122         /* load the state */
123         memcpy(a, state->h, 5*sizeof(uint32_t));
124
125
126         /* the fun stuff */
127         for(t=0; t<=79; ++t){
128                 s = t & MASK;
129                 if(t>=16){
130                         #ifdef DEBUG
131                          DEBUG_S("\r\n ws = "); cli_hexdump(&(w[s]), 4);
132                         #endif
133                         w[s] = rotl32( w[(s+13)&MASK] ^ w[(s+8)&MASK] ^
134                                  w[(s+ 2)&MASK] ^ w[s] ,1);
135                         #ifdef DEBUG
136                          DEBUG_S(" --> ws = "); cli_hexdump(&(w[s]), 4);
137                         #endif
138                 }
139
140                 uint32_t dtemp;
141                 temp = rotl32(a[0],5) + (dtemp=f[t/20](a[1],a[2],a[3])) + a[4] + k[t/20] + w[s];
142                 memmove(&(a[1]), &(a[0]), 4*sizeof(uint32_t)); /* e=d; d=c; c=b; b=a; */
143                 a[0] = temp;
144                 a[2] = rotl32(a[2],30); /* we might also do rotr32(c,2) */
145
146                 /* debug dump */
147                 DEBUG_S("\r\nt = "); DEBUG_B(t);
148                 DEBUG_S("; a[]: ");
149                 #ifdef DEBUG
150                  cli_hexdump(a, 5*4);
151                 #endif
152                 DEBUG_S("; k = ");
153                 #ifdef DEBUG
154                  cli_hexdump(&(k[t/20]), 4);
155                 #endif
156                 DEBUG_S("; f(b,c,d) = ");
157                 #ifdef DEBUG
158                  cli_hexdump(&dtemp, 4);
159                 #endif
160         }
161
162         /* update the state */
163         for(t=0; t<5; ++t){
164                 state->h[t] += a[t];
165         }
166         state->length += 512;
167 }
168
169 /********************************************************************************************************/
170
171 void sha1_lastBlock(sha1_ctx_t *state, const void* block, uint16_t length){
172         uint8_t lb[SHA1_BLOCK_BITS/8]; /* local block */
173         while(length>=512){
174                 sha1_nextBlock(state, block);
175                 length -=512;
176                 block = (uint8_t*)block + 512/8;
177         }
178         state->length += length;
179         memcpy (lb, block, (length+7)/8);
180
181         /* set the final one bit */
182         lb[length/8] |= 0x80>>(length & 0x07);
183         length=(length)/8 +1; /* from now on length contains the number of BYTES in lb */
184
185         if (length>64-8){ /* not enouth space for 64bit length value */
186                 memset(lb+length, 0, 64-length);
187                 sha1_nextBlock(state, lb);
188                 state->length -= 512;
189                 length = 0;
190         }
191
192         /* pad with zeros */
193         memset(lb+length, 0, 56-length);
194         /* store the 64bit length value */
195 #if defined LITTLE_ENDIAN
196                 /* this is now rolled up */
197         uint8_t i;
198         for (i=0; i<8; ++i){
199                 lb[56+i] = ((uint8_t*)&(state->length))[7-i];
200         }
201 #elif defined BIG_ENDIAN
202         *((uint64_t)&(lb[56])) = state->length;
203 #endif
204         sha1_nextBlock(state, lb);
205 }
206
207 /********************************************************************************************************/
208
209 void sha1_ctx2hash (sha1_hash_t *dest, sha1_ctx_t *state){
210 #if defined LITTLE_ENDIAN
211         uint8_t i;
212         for(i=0; i<8; ++i){
213                 ((uint32_t*)dest)[i] = change_endian32(state->h[i]);
214         }
215 #elif BIG_ENDIAN
216         if (dest != state->h)
217                 memcpy(dest, state->h, SHA256_HASH_BITS/8);
218 #else
219 # error unsupported endian type!
220 #endif
221 }
222
223 /********************************************************************************************************/
224 /**
225  *
226  *
227  */
228 void sha1 (sha1_hash_t *dest, const void* msg, uint32_t length){
229         sha1_ctx_t s;
230         DEBUG_S("\r\nBLA BLUB");
231         sha1_init(&s);
232         while(length & (~0x0001ff)){ /* length>=512 */
233                 DEBUG_S("\r\none block");
234                 sha1_nextBlock(&s, msg);
235                 msg = (uint8_t*)msg + SHA1_BLOCK_BITS/8; /* increment pointer to next block */
236                 length -= SHA1_BLOCK_BITS;
237         }
238         sha1_lastBlock(&s, msg, length);
239         sha1_ctx2hash(dest, &s);
240 }
241
242