]> git.cryptolib.org Git - avr-crypto-lib.git/blob - keccak/keccak.c
optimized rotates for keccak
[avr-crypto-lib.git] / keccak / keccak.c
1 /* keecak.c */
2 /*
3     This file is part of the AVR-Crypto-Lib.
4     Copyright (C) 2010 Daniel Otte (daniel.otte@rub.de)
5
6     This program is free software: you can redistribute it and/or modify
7     it under the terms of the GNU General Public License as published by
8     the Free Software Foundation, either version 3 of the License, or
9     (at your option) any later version.
10
11     This program is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14     GNU General Public License for more details.
15
16     You should have received a copy of the GNU General Public License
17     along with this program.  If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <stdint.h>
21 #include <stdlib.h>
22 #include <string.h>
23 #include <avr/pgmspace.h>
24 #include "memxor.h"
25 #include "rotate64.h"
26 #include "keccak.h"
27
28 #ifdef DEBUG
29 #  undef DEBUG
30 #endif
31
32 #define DEBUG 0
33
34 #if DEBUG
35 #include "cli.h"
36
37 void keccak_dump_state(uint64_t a[5][5]){
38         uint8_t i,j;
39         for(i=0; i<5; ++i){
40                 cli_putstr_P(PSTR("\r\n"));
41                 cli_putc('0'+i);
42                 cli_putstr_P(PSTR(": "));
43                 for(j=0; j<5; ++j){
44                         cli_hexdump_rev(&(a[i][j]), 8);
45                         cli_putc(' ');
46                 }
47         }
48 }
49
50 void keccak_dump_ctx(keccak_ctx_t* ctx){
51         keccak_dump_state(ctx->a);
52         cli_putstr_P(PSTR("\r\nDBG: r: "));
53         cli_hexdump_rev(&(ctx->r), 2);
54         cli_putstr_P(PSTR("\t c: "));
55         cli_hexdump_rev(&(ctx->c), 2);
56         cli_putstr_P(PSTR("\t d: "));
57         cli_hexdump(&(ctx->d), 1);
58         cli_putstr_P(PSTR("\t bs: "));
59         cli_hexdump(&(ctx->bs), 1);
60 }
61
62 #endif
63
64 /*
65 static uint64_t rc[] PROGMEM = {
66        0x0000000000000001LL, 0x0000000000008082LL,
67        0x800000000000808ALL, 0x8000000080008000LL,
68        0x000000000000808BLL, 0x0000000080000001LL,
69        0x8000000080008081LL, 0x8000000000008009LL,
70        0x000000000000008ALL, 0x0000000000000088LL,
71        0x0000000080008009LL, 0x000000008000000ALL,
72        0x000000008000808BLL, 0x800000000000008BLL,
73        0x8000000000008089LL, 0x8000000000008003LL,
74        0x8000000000008002LL, 0x8000000000000080LL,
75        0x000000000000800ALL, 0x800000008000000ALL,
76        0x8000000080008081LL, 0x8000000000008080LL,
77        0x0000000080000001LL, 0x8000000080008008LL
78 };
79 */
80
81 static uint8_t rc_comp[] PROGMEM = {
82                 0x01, 0x92, 0xda, 0x70,
83                 0x9b, 0x21, 0xf1, 0x59,
84                 0x8a, 0x88, 0x39, 0x2a,
85                 0xbb, 0xcb, 0xd9, 0x53,
86                 0x52, 0xc0, 0x1a, 0x6a,
87                 0xf1, 0xd0, 0x21, 0x78,
88 };
89
90 uint64_t rotl64(uint64_t a, uint8_t r){
91          return (a<<r)|(a>>(64-r));
92 }
93
94 static uint8_t r[5][5] PROGMEM = {
95                 { ROT_CODE( 0), ROT_CODE(36), ROT_CODE( 3), ROT_CODE(41), ROT_CODE(18) },
96                 { ROT_CODE( 1), ROT_CODE(44), ROT_CODE(10), ROT_CODE(45), ROT_CODE( 2) },
97                 { ROT_CODE(62), ROT_CODE( 6), ROT_CODE(43), ROT_CODE(15), ROT_CODE(61) },
98                 { ROT_CODE(28), ROT_CODE(55), ROT_CODE(25), ROT_CODE(21), ROT_CODE(56) },
99                 { ROT_CODE(27), ROT_CODE(20), ROT_CODE(39), ROT_CODE( 8), ROT_CODE(14) }
100 };
101
102 static inline
103 void keccak_round(uint64_t a[5][5], uint8_t rci){
104         uint64_t b[5][5];
105         uint8_t i,j;
106         union {
107                         uint64_t v64;
108                         uint8_t v8[8];
109                 } t;
110         /* theta */
111         for(i=0; i<5; ++i){
112                 b[i][0] = a[0][i] ^ a[1][i] ^ a[2][i] ^ a[3][i] ^ a[4][i];
113         }
114         for(i=0; i<5; ++i){
115                 t.v64 = b[(4+i)%5][0] ^ rotate64_1bit_left(b[(i+1)%5][0]);
116                 for(j=0; j<5; ++j){
117                         a[j][i] ^= t.v64;
118                 }
119         }
120 #if DEBUG
121         cli_putstr_P(PSTR("\r\nAfter theta:"));
122         keccak_dump_state(a);
123 #endif
124         /* rho & pi */
125         for(i=0; i<5; ++i){
126                 for(j=0; j<5; ++j){
127 //                      b[(2*i+3*j)%5][j] = rotl64(a[j][i], pgm_read_byte(&(r[i][j])));
128                         b[(2*i+3*j)%5][j] = rotate64left_code(a[j][i], pgm_read_byte(&(r[i][j])));
129                 }
130         }
131 #if DEBUG
132         cli_putstr_P(PSTR("\r\n--- after rho & pi ---"));
133         keccak_dump_state(a);
134 #endif
135         /* chi */
136         for(i=0; i<5; ++i){
137                 for(j=0; j<5; ++j){
138                         a[j][i] =  b[j][i] ^ ((~(b[j][(i+1)%5]))&(b[j][(i+2)%5]));
139                 }
140         }
141 #if DEBUG
142         cli_putstr_P(PSTR("\r\nAfter chi:"));
143         keccak_dump_state(a);
144 #endif
145         /* iota */
146
147 //      memcpy_P(&t, &(rc_comp[rci]), 8);
148         t.v64 = 0;
149         t.v8[0] = pgm_read_byte(&(rc_comp[rci]));
150         if(t.v8[0]&0x40){
151                 t.v8[7] = 0x80;
152         }
153         if(t.v8[0]&0x20){
154                 t.v8[3] = 0x80;
155         }
156         if(t.v8[0]&0x10){
157                 t.v8[1] = 0x80;
158         }
159         t.v8[0] &= 0x8F;
160
161         a[0][0] ^= t.v64;
162 #if DEBUG
163         cli_putstr_P(PSTR("\r\nAfter iota:"));
164         keccak_dump_state(a);
165 #endif
166 }
167
168 void keccak_f1600(uint64_t a[5][5]){
169         uint8_t i=0;
170         do{
171 #if DEBUG
172                 cli_putstr_P(PSTR("\r\n\r\n--- Round "));
173                 cli_hexdump(&i, 1);
174                 cli_putstr_P(PSTR(" ---"));
175 #endif
176                 keccak_round(a, i);
177         }while(++i<24);
178 }
179
180 void keccak_nextBlock(keccak_ctx_t* ctx, const void* block){
181         memxor(ctx->a, block, ctx->bs);
182         keccak_f1600(ctx->a);
183 }
184
185 void keccak_lastBlock(keccak_ctx_t* ctx, const void* block, uint16_t length_b){
186         while(length_b>=ctx->r){
187                 keccak_nextBlock(ctx, block);
188                 block = (uint8_t*)block + ctx->bs;
189                 length_b -=  ctx->r;
190         }
191         uint8_t tmp[ctx->bs];
192         uint8_t pad[3];
193         memset(tmp, 0x00, ctx->bs);
194         memcpy(tmp, block, (length_b+7)/8);
195         /* appand 1 */
196         if(length_b&7){
197                 /* we have some single bits */
198                 uint8_t t;
199                 t = tmp[length_b/8]>>(8-(length_b&7));
200                 t |= 0x01<<(length_b&7);
201                 tmp[length_b/8] = t;
202         }else{
203                 tmp[length_b/8] = 0x01;
204         }
205         pad[0] = ctx->d;
206         pad[1] = ctx->bs;
207         pad[2] = 0x01;
208         if(length_b/8+1+3<=ctx->bs){
209                 memcpy(tmp+length_b/8+1, pad, 3);
210         }else{
211                 if(length_b/8+1+2<=ctx->bs){
212                         memcpy(tmp+length_b/8+1, pad, 2);
213                         keccak_nextBlock(ctx, tmp);
214                         memset(tmp, 0x00, ctx->bs);
215                         tmp[0]=0x01;
216                 }else{
217                         if(length_b/8+1+1<=ctx->bs){
218                                 memcpy(tmp+length_b/8+1, pad, 1);
219                                 keccak_nextBlock(ctx, tmp);
220                                 memset(tmp, 0x00, ctx->bs);
221                                 tmp[0] = ctx->bs;
222                                 tmp[1] = 0x01;
223                         }else{
224                                 keccak_nextBlock(ctx, tmp);
225                                 memset(tmp, 0x00, ctx->bs);
226                                 tmp[0] = ctx->d;
227                                 tmp[1] = ctx->bs;
228                                 tmp[2] = 0x01;
229                         }
230                 }
231         }
232         keccak_nextBlock(ctx, tmp);
233 }
234
235 void keccak_ctx2hash(void* dest, uint16_t length_b, keccak_ctx_t* ctx){
236         while(length_b>=ctx->r){
237                 memcpy(dest, ctx->a, ctx->bs);
238                 dest = (uint8_t*)dest + ctx->bs;
239                 length_b -= ctx->r;
240                 keccak_f1600(ctx->a);
241         }
242         memcpy(dest, ctx->a, (length_b+7)/8);
243 }
244
245 void keccak224_ctx2hash(void* dest, keccak_ctx_t* ctx){
246         keccak_ctx2hash(dest, 224, ctx);
247 }
248
249 void keccak256_ctx2hash(void* dest, keccak_ctx_t* ctx){
250         keccak_ctx2hash(dest, 256, ctx);
251 }
252
253 void keccak384_ctx2hash(void* dest, keccak_ctx_t* ctx){
254         keccak_ctx2hash(dest, 384, ctx);
255 }
256
257 void keccak512_ctx2hash(void* dest, keccak_ctx_t* ctx){
258         keccak_ctx2hash(dest, 512, ctx);
259 }
260
261 /*
262 1. SHA3-224: ⌊Keccak[r = 1152, c = 448, d = 28]⌋224
263 2. SHA3-256: ⌊Keccak[r = 1088, c = 512, d = 32]⌋256
264 3. SHA3-384: ⌊Keccak[r = 832, c = 768, d = 48]⌋384
265 4. SHA3-512: ⌊Keccak[r = 576, c = 1024, d = 64]⌋512
266 */
267 void keccak_init(uint16_t r, uint16_t c, uint8_t d, keccak_ctx_t* ctx){
268         memset(ctx->a, 0x00, 5*5*8);
269         ctx->r = r;
270         ctx->c = c;
271         ctx->d = d;
272         ctx->bs = (uint8_t)(r/8);
273 }
274
275 void keccak224_init(keccak_ctx_t* ctx){
276         keccak_init(1152, 448, 28, ctx);
277 }
278
279 void keccak256_init(keccak_ctx_t* ctx){
280         keccak_init(1088, 512, 32, ctx);
281 }
282
283 void keccak384_init(keccak_ctx_t* ctx){
284         keccak_init( 832, 768, 48, ctx);
285 }
286
287 void keccak512_init(keccak_ctx_t* ctx){
288         keccak_init( 576, 1024, 64, ctx);
289 }