3 This file is part of the AVR-Crypto-Lib.
4 Copyright (C) 2010 Daniel Otte (daniel.otte@rub.de)
6 This program is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
23 #include <avr/pgmspace.h>
37 void keccak_dump_state(uint64_t a[5][5]){
40 cli_putstr_P(PSTR("\r\n"));
42 cli_putstr_P(PSTR(": "));
44 cli_hexdump_rev(&(a[i][j]), 8);
50 void keccak_dump_ctx(keccak_ctx_t* ctx){
51 keccak_dump_state(ctx->a);
52 cli_putstr_P(PSTR("\r\nDBG: r: "));
53 cli_hexdump_rev(&(ctx->r), 2);
54 cli_putstr_P(PSTR("\t c: "));
55 cli_hexdump_rev(&(ctx->c), 2);
56 cli_putstr_P(PSTR("\t d: "));
57 cli_hexdump(&(ctx->d), 1);
58 cli_putstr_P(PSTR("\t bs: "));
59 cli_hexdump(&(ctx->bs), 1);
65 const uint64_t rc[] PROGMEM = {
66 0x0000000000000001LL, 0x0000000000008082LL,
67 0x800000000000808ALL, 0x8000000080008000LL,
68 0x000000000000808BLL, 0x0000000080000001LL,
69 0x8000000080008081LL, 0x8000000000008009LL,
70 0x000000000000008ALL, 0x0000000000000088LL,
71 0x0000000080008009LL, 0x000000008000000ALL,
72 0x000000008000808BLL, 0x800000000000008BLL,
73 0x8000000000008089LL, 0x8000000000008003LL,
74 0x8000000000008002LL, 0x8000000000000080LL,
75 0x000000000000800ALL, 0x800000008000000ALL,
76 0x8000000080008081LL, 0x8000000000008080LL,
77 0x0000000080000001LL, 0x8000000080008008LL
81 const static uint8_t rc_comp[] PROGMEM = {
82 0x01, 0x92, 0xda, 0x70,
83 0x9b, 0x21, 0xf1, 0x59,
84 0x8a, 0x88, 0x39, 0x2a,
85 0xbb, 0xcb, 0xd9, 0x53,
86 0x52, 0xc0, 0x1a, 0x6a,
87 0xf1, 0xd0, 0x21, 0x78,
90 const static uint8_t r[5][5] PROGMEM = {
91 { ROT_CODE( 0), ROT_CODE(36), ROT_CODE( 3), ROT_CODE(41), ROT_CODE(18) },
92 { ROT_CODE( 1), ROT_CODE(44), ROT_CODE(10), ROT_CODE(45), ROT_CODE( 2) },
93 { ROT_CODE(62), ROT_CODE( 6), ROT_CODE(43), ROT_CODE(15), ROT_CODE(61) },
94 { ROT_CODE(28), ROT_CODE(55), ROT_CODE(25), ROT_CODE(21), ROT_CODE(56) },
95 { ROT_CODE(27), ROT_CODE(20), ROT_CODE(39), ROT_CODE( 8), ROT_CODE(14) }
99 void keccak_round(uint64_t a[5][5], uint8_t rci){
107 for(i = 0; i < 5; ++i){
108 b[i][0] = a[0][i] ^ a[1][i] ^ a[2][i] ^ a[3][i] ^ a[4][i];
110 for(i = 0; i < 5; ++i){
111 t.v64 = b[(4 + i) % 5][0] ^ rotate64_1bit_left(b[(i + 1) % 5][0]);
112 for(j = 0; j < 5; ++j){
117 cli_putstr_P(PSTR("\r\nAfter theta:"));
118 keccak_dump_state(a);
121 for(i = 0; i < 5; ++i){
122 for(j = 0; j < 5; ++j){
123 b[(2 * i + 3 * j) % 5][j] = rotate64left_code(a[j][i], pgm_read_byte(&(r[i][j])));
127 cli_putstr_P(PSTR("\r\n--- after rho & pi ---"));
128 keccak_dump_state(a);
131 for(i = 0; i < 5; ++i){
132 for(j = 0; j < 5; ++j){
133 a[j][i] = b[j][i] ^ ((~(b[j][(i + 1) % 5])) & (b[j][(i + 2) % 5]));
137 cli_putstr_P(PSTR("\r\nAfter chi:"));
138 keccak_dump_state(a);
142 // memcpy_P(&t, &(rc_comp[rci]), 8);
144 t.v8[0] = pgm_read_byte(&(rc_comp[rci]));
158 cli_putstr_P(PSTR("\r\nAfter iota:"));
159 keccak_dump_state(a);
163 void keccak_f1600(uint64_t a[5][5]){
167 cli_putstr_P(PSTR("\r\n\r\n--- Round "));
169 cli_putstr_P(PSTR(" ---"));
175 void keccak_nextBlock(keccak_ctx_t* ctx, const void* block){
176 memxor(ctx->a, block, ctx->bs);
177 keccak_f1600(ctx->a);
180 void keccak_lastBlock(keccak_ctx_t* ctx, const void* block, uint16_t length_b){
181 while(length_b>=ctx->r){
182 keccak_nextBlock(ctx, block);
183 block = (uint8_t*)block + ctx->bs;
186 uint8_t tmp[ctx->bs];
188 memset(tmp, 0x00, ctx->bs);
189 memcpy(tmp, block, (length_b+7)/8);
192 /* we have some single bits */
194 t = tmp[length_b / 8] >> (8 - (length_b & 7));
195 t |= 0x01 << (length_b & 7);
196 tmp[length_b / 8] = t;
198 tmp[length_b / 8] = 0x01;
203 if(length_b / 8 + 1 + 3 <= ctx->bs){
204 memcpy(tmp + length_b / 8 + 1, pad, 3);
206 if(length_b / 8 + 1 + 2 <= ctx->bs){
207 memcpy(tmp+length_b/8+1, pad, 2);
208 keccak_nextBlock(ctx, tmp);
209 memset(tmp, 0x00, ctx->bs);
212 if(length_b/8+1+1 <= ctx->bs){
213 memcpy(tmp + length_b / 8 + 1, pad, 1);
214 keccak_nextBlock(ctx, tmp);
215 memset(tmp, 0x00, ctx->bs);
219 keccak_nextBlock(ctx, tmp);
220 memset(tmp, 0x00, ctx->bs);
227 keccak_nextBlock(ctx, tmp);
230 void keccak_ctx2hash(void* dest, uint16_t length_b, keccak_ctx_t* ctx){
231 while(length_b>=ctx->r){
232 memcpy(dest, ctx->a, ctx->bs);
233 dest = (uint8_t*)dest + ctx->bs;
235 keccak_f1600(ctx->a);
237 memcpy(dest, ctx->a, (length_b+7)/8);
240 void keccak224_ctx2hash(void* dest, keccak_ctx_t* ctx){
241 keccak_ctx2hash(dest, 224, ctx);
244 void keccak256_ctx2hash(void* dest, keccak_ctx_t* ctx){
245 keccak_ctx2hash(dest, 256, ctx);
248 void keccak384_ctx2hash(void* dest, keccak_ctx_t* ctx){
249 keccak_ctx2hash(dest, 384, ctx);
252 void keccak512_ctx2hash(void* dest, keccak_ctx_t* ctx){
253 keccak_ctx2hash(dest, 512, ctx);
257 1. SHA3-224: ⌊Keccak[r = 1152, c = 448, d = 28]⌋224
258 2. SHA3-256: ⌊Keccak[r = 1088, c = 512, d = 32]⌋256
259 3. SHA3-384: ⌊Keccak[r = 832, c = 768, d = 48]⌋384
260 4. SHA3-512: ⌊Keccak[r = 576, c = 1024, d = 64]⌋512
262 void keccak_init(uint16_t r, uint16_t c, uint8_t d, keccak_ctx_t* ctx){
263 memset(ctx->a, 0x00, 5 * 5 * 8);
267 ctx->bs = (uint8_t)(r / 8);
270 void keccak224_init(keccak_ctx_t* ctx){
271 keccak_init(1152, 448, 28, ctx);
274 void keccak256_init(keccak_ctx_t* ctx){
275 keccak_init(1088, 512, 32, ctx);
278 void keccak384_init(keccak_ctx_t* ctx){
279 keccak_init( 832, 768, 48, ctx);
282 void keccak512_init(keccak_ctx_t* ctx){
283 keccak_init( 576, 1024, 64, ctx);