3 This file is part of the AVR-Crypto-Lib.
4 Copyright (C) 2010 Daniel Otte (daniel.otte@rub.de)
6 This program is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
23 #include <avr/pgmspace.h>
37 void keccak_dump_state(uint64_t a[5][5]){
40 cli_putstr_P(PSTR("\r\n"));
42 cli_putstr_P(PSTR(": "));
44 cli_hexdump_rev(&(a[i][j]), 8);
50 void keccak_dump_ctx(keccak_ctx_t* ctx){
51 keccak_dump_state(ctx->a);
52 cli_putstr_P(PSTR("\r\nDBG: r: "));
53 cli_hexdump_rev(&(ctx->r), 2);
54 cli_putstr_P(PSTR("\t c: "));
55 cli_hexdump_rev(&(ctx->c), 2);
56 cli_putstr_P(PSTR("\t d: "));
57 cli_hexdump(&(ctx->d), 1);
58 cli_putstr_P(PSTR("\t bs: "));
59 cli_hexdump(&(ctx->bs), 1);
65 static uint64_t rc[] PROGMEM = {
66 0x0000000000000001LL, 0x0000000000008082LL,
67 0x800000000000808ALL, 0x8000000080008000LL,
68 0x000000000000808BLL, 0x0000000080000001LL,
69 0x8000000080008081LL, 0x8000000000008009LL,
70 0x000000000000008ALL, 0x0000000000000088LL,
71 0x0000000080008009LL, 0x000000008000000ALL,
72 0x000000008000808BLL, 0x800000000000008BLL,
73 0x8000000000008089LL, 0x8000000000008003LL,
74 0x8000000000008002LL, 0x8000000000000080LL,
75 0x000000000000800ALL, 0x800000008000000ALL,
76 0x8000000080008081LL, 0x8000000000008080LL,
77 0x0000000080000001LL, 0x8000000080008008LL
81 static uint8_t rc_comp[] PROGMEM = {
82 0x01, 0x92, 0xda, 0x70,
83 0x9b, 0x21, 0xf1, 0x59,
84 0x8a, 0x88, 0x39, 0x2a,
85 0xbb, 0xcb, 0xd9, 0x53,
86 0x52, 0xc0, 0x1a, 0x6a,
87 0xf1, 0xd0, 0x21, 0x78,
90 static uint8_t r[5][5] PROGMEM = {
91 { ROT_CODE( 0), ROT_CODE(36), ROT_CODE( 3), ROT_CODE(41), ROT_CODE(18) },
92 { ROT_CODE( 1), ROT_CODE(44), ROT_CODE(10), ROT_CODE(45), ROT_CODE( 2) },
93 { ROT_CODE(62), ROT_CODE( 6), ROT_CODE(43), ROT_CODE(15), ROT_CODE(61) },
94 { ROT_CODE(28), ROT_CODE(55), ROT_CODE(25), ROT_CODE(21), ROT_CODE(56) },
95 { ROT_CODE(27), ROT_CODE(20), ROT_CODE(39), ROT_CODE( 8), ROT_CODE(14) }
99 void keccak_round(uint64_t a[5][5], uint8_t rci){
108 b[i][0] = a[0][i] ^ a[1][i] ^ a[2][i] ^ a[3][i] ^ a[4][i];
111 t.v64 = b[(4+i)%5][0] ^ rotate64_1bit_left(b[(i+1)%5][0]);
117 cli_putstr_P(PSTR("\r\nAfter theta:"));
118 keccak_dump_state(a);
123 // b[(2*i+3*j)%5][j] = rotl64(a[j][i], pgm_read_byte(&(r[i][j])));
124 b[(2*i+3*j)%5][j] = rotate64left_code(a[j][i], pgm_read_byte(&(r[i][j])));
128 cli_putstr_P(PSTR("\r\n--- after rho & pi ---"));
129 keccak_dump_state(a);
134 a[j][i] = b[j][i] ^ ((~(b[j][(i+1)%5]))&(b[j][(i+2)%5]));
138 cli_putstr_P(PSTR("\r\nAfter chi:"));
139 keccak_dump_state(a);
143 // memcpy_P(&t, &(rc_comp[rci]), 8);
145 t.v8[0] = pgm_read_byte(&(rc_comp[rci]));
159 cli_putstr_P(PSTR("\r\nAfter iota:"));
160 keccak_dump_state(a);
164 void keccak_f1600(uint64_t a[5][5]){
168 cli_putstr_P(PSTR("\r\n\r\n--- Round "));
170 cli_putstr_P(PSTR(" ---"));
176 void keccak_nextBlock(keccak_ctx_t* ctx, const void* block){
177 memxor(ctx->a, block, ctx->bs);
178 keccak_f1600(ctx->a);
181 void keccak_lastBlock(keccak_ctx_t* ctx, const void* block, uint16_t length_b){
182 while(length_b>=ctx->r){
183 keccak_nextBlock(ctx, block);
184 block = (uint8_t*)block + ctx->bs;
187 uint8_t tmp[ctx->bs];
189 memset(tmp, 0x00, ctx->bs);
190 memcpy(tmp, block, (length_b+7)/8);
193 /* we have some single bits */
195 t = tmp[length_b/8]>>(8-(length_b&7));
196 t |= 0x01<<(length_b&7);
199 tmp[length_b/8] = 0x01;
204 if(length_b/8+1+3<=ctx->bs){
205 memcpy(tmp+length_b/8+1, pad, 3);
207 if(length_b/8+1+2<=ctx->bs){
208 memcpy(tmp+length_b/8+1, pad, 2);
209 keccak_nextBlock(ctx, tmp);
210 memset(tmp, 0x00, ctx->bs);
213 if(length_b/8+1+1<=ctx->bs){
214 memcpy(tmp+length_b/8+1, pad, 1);
215 keccak_nextBlock(ctx, tmp);
216 memset(tmp, 0x00, ctx->bs);
220 keccak_nextBlock(ctx, tmp);
221 memset(tmp, 0x00, ctx->bs);
228 keccak_nextBlock(ctx, tmp);
231 void keccak_ctx2hash(void* dest, uint16_t length_b, keccak_ctx_t* ctx){
232 while(length_b>=ctx->r){
233 memcpy(dest, ctx->a, ctx->bs);
234 dest = (uint8_t*)dest + ctx->bs;
236 keccak_f1600(ctx->a);
238 memcpy(dest, ctx->a, (length_b+7)/8);
241 void keccak224_ctx2hash(void* dest, keccak_ctx_t* ctx){
242 keccak_ctx2hash(dest, 224, ctx);
245 void keccak256_ctx2hash(void* dest, keccak_ctx_t* ctx){
246 keccak_ctx2hash(dest, 256, ctx);
249 void keccak384_ctx2hash(void* dest, keccak_ctx_t* ctx){
250 keccak_ctx2hash(dest, 384, ctx);
253 void keccak512_ctx2hash(void* dest, keccak_ctx_t* ctx){
254 keccak_ctx2hash(dest, 512, ctx);
258 1. SHA3-224: ⌊Keccak[r = 1152, c = 448, d = 28]⌋224
259 2. SHA3-256: ⌊Keccak[r = 1088, c = 512, d = 32]⌋256
260 3. SHA3-384: ⌊Keccak[r = 832, c = 768, d = 48]⌋384
261 4. SHA3-512: ⌊Keccak[r = 576, c = 1024, d = 64]⌋512
263 void keccak_init(uint16_t r, uint16_t c, uint8_t d, keccak_ctx_t* ctx){
264 memset(ctx->a, 0x00, 5*5*8);
268 ctx->bs = (uint8_t)(r/8);
271 void keccak224_init(keccak_ctx_t* ctx){
272 keccak_init(1152, 448, 28, ctx);
275 void keccak256_init(keccak_ctx_t* ctx){
276 keccak_init(1088, 512, 32, ctx);
279 void keccak384_init(keccak_ctx_t* ctx){
280 keccak_init( 832, 768, 48, ctx);
283 void keccak512_init(keccak_ctx_t* ctx){
284 keccak_init( 576, 1024, 64, ctx);