]> git.cryptolib.org Git - labortage2013badge.git/blob - firmware/main.c
a266a59a8ec61ba3b9c6a4fb9d764495fc9ad9ee
[labortage2013badge.git] / firmware / main.c
1 /* Name: main.c
2  * Project: hid-custom-rq example
3  * Author: Christian Starkjohann
4  * Creation Date: 2008-04-07
5  * Tabsize: 4
6  * Copyright: (c) 2008 by OBJECTIVE DEVELOPMENT Software GmbH
7  * License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
8  * This Revision: $Id: main.c 692 2008-11-07 15:07:40Z cs $
9  */
10
11 /*
12 This example should run on most AVRs with only little changes. No special
13 hardware resources except INT0 are used. You may have to change usbconfig.h for
14 different I/O pins for USB. Please note that USB D+ must be the INT0 pin, or
15 at least be connected to INT0 as well.
16 We assume that an LED is connected to port B bit 0. If you connect it to a
17 different port or bit, change the macros below:
18 */
19 #define LED_PORT_DDR        DDRB
20 #define LED_PORT_OUTPUT     PORTB
21 #define R_BIT            4
22 #define G_BIT            3
23 #define B_BIT            1
24 #define BUTTON_PIN 4
25
26 #include <stdint.h>
27 #include <string.h>
28 #include <stdbool.h>
29
30 #include <avr/io.h>
31 #include <avr/wdt.h>
32 #include <avr/eeprom.h>
33 #include <avr/interrupt.h>  /* for sei() */
34 #include <util/delay.h>     /* for _delay_ms() */
35
36 #include <avr/pgmspace.h>   /* required by usbdrv.h */
37 #include "usbdrv.h"
38 #include "oddebug.h"        /* This is also an example for using debug macros */
39 #include "requests.h"       /* The custom request numbers we use */
40 #include "special_functions.h"
41
42 void update_pwm(void);
43
44 /* ------------------------------------------------------------------------- */
45 /* ----------------------------- USB interface ----------------------------- */
46 /* ------------------------------------------------------------------------- */
47 PROGMEM const char usbHidReportDescriptor[USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH] = {
48     0x05, 0x01,                    // USAGE_PAGE (Generic Desktop)
49     0x09, 0x06,                    // USAGE (Keyboard)
50     0xa1, 0x01,                    // COLLECTION (Application)
51     0x75, 0x01,                    //   REPORT_SIZE (1)
52     0x95, 0x08,                    //   REPORT_COUNT (8)
53     0x05, 0x07,                    //   USAGE_PAGE (Keyboard)(Key Codes)
54     0x19, 0xe0,                    //   USAGE_MINIMUM (Keyboard LeftControl)(224)
55     0x29, 0xe7,                    //   USAGE_MAXIMUM (Keyboard Right GUI)(231)
56     0x15, 0x00,                    //   LOGICAL_MINIMUM (0)
57     0x25, 0x01,                    //   LOGICAL_MAXIMUM (1)
58     0x81, 0x02,                    //   INPUT (Data,Var,Abs) ; Modifier byte
59     0x95, 0x01,                    //   REPORT_COUNT (1)
60     0x75, 0x08,                    //   REPORT_SIZE (8)
61     0x81, 0x03,                    //   INPUT (Cnst,Var,Abs) ; Reserved byte
62     0x95, 0x05,                    //   REPORT_COUNT (5)
63     0x75, 0x01,                    //   REPORT_SIZE (1)
64     0x05, 0x08,                    //   USAGE_PAGE (LEDs)
65     0x19, 0x01,                    //   USAGE_MINIMUM (Num Lock)
66     0x29, 0x05,                    //   USAGE_MAXIMUM (Kana)
67     0x91, 0x02,                    //   OUTPUT (Data,Var,Abs) ; LED report
68     0x95, 0x01,                    //   REPORT_COUNT (1)
69     0x75, 0x03,                    //   REPORT_SIZE (3)
70     0x91, 0x03,                    //   OUTPUT (Cnst,Var,Abs) ; LED report padding
71     0x95, 0x06,                    //   REPORT_COUNT (6)
72     0x75, 0x08,                    //   REPORT_SIZE (8)
73     0x15, 0x00,                    //   LOGICAL_MINIMUM (0)
74     0x25, 0x65,                    //   LOGICAL_MAXIMUM (101)
75     0x05, 0x07,                    //   USAGE_PAGE (Keyboard)(Key Codes)
76     0x19, 0x00,                    //   USAGE_MINIMUM (Reserved (no event indicated))(0)
77     0x29, 0x65,                    //   USAGE_MAXIMUM (Keyboard Application)(101)
78     0x81, 0x00,                    //   INPUT (Data,Ary,Abs)
79     0xc0                           // END_COLLECTION
80 };
81
82 /* Keyboard usage values, see usb.org's HID-usage-tables document, chapter
83  * 10 Keyboard/Keypad Page for more codes.
84  */
85 #define MOD_CONTROL_LEFT    (1<<0)
86 #define MOD_SHIFT_LEFT      (1<<1)
87 #define MOD_ALT_LEFT        (1<<2)
88 #define MOD_GUI_LEFT        (1<<3)
89 #define MOD_CONTROL_RIGHT   (1<<4)
90 #define MOD_SHIFT_RIGHT     (1<<5)
91 #define MOD_ALT_RIGHT       (1<<6)
92 #define MOD_GUI_RIGHT       (1<<7)
93
94 #define KEY_A       4
95 #define KEY_B       5
96 #define KEY_C       6
97 #define KEY_D       7
98 #define KEY_E       8
99 #define KEY_F       9
100 #define KEY_G       10
101 #define KEY_H       11
102 #define KEY_I       12
103 #define KEY_J       13
104 #define KEY_K       14
105 #define KEY_L       15
106 #define KEY_M       16
107 #define KEY_N       17
108 #define KEY_O       18
109 #define KEY_P       19
110 #define KEY_Q       20
111 #define KEY_R       21
112 #define KEY_S       22
113 #define KEY_T       23
114 #define KEY_U       24
115 #define KEY_V       25
116 #define KEY_W       26
117 #define KEY_X       27
118 #define KEY_Y       28
119 #define KEY_Z       29
120 #define KEY_1       30
121 #define KEY_2       31
122 #define KEY_3       32
123 #define KEY_4       33
124 #define KEY_5       34
125 #define KEY_6       35
126 #define KEY_7       36
127 #define KEY_8       37
128 #define KEY_9       38
129 #define KEY_0       39
130
131 #define KEY_F1      58
132 #define KEY_F2      59
133 #define KEY_F3      60
134 #define KEY_F4      61
135 #define KEY_F5      62
136 #define KEY_F6      63
137 #define KEY_F7      64
138 #define KEY_F8      65
139 #define KEY_F9      66
140 #define KEY_F10     67
141 #define KEY_F11     68
142 #define KEY_F12     69
143
144 #define NUM_LOCK 1
145 #define CAPS_LOCK 2
146 #define SCROLL_LOCK 4
147
148
149 #define UNI_BUFFER_SIZE 16
150
151 static uint8_t dbg_buffer[8];
152
153 static union {
154         uint8_t  w8[UNI_BUFFER_SIZE];
155         uint16_t w16[UNI_BUFFER_SIZE/2];
156         uint32_t w32[UNI_BUFFER_SIZE/4];
157         void*    ptr[UNI_BUFFER_SIZE/sizeof(void*)];
158 } uni_buffer;
159
160 static uint8_t uni_buffer_fill;
161 static uint8_t current_command;
162
163 typedef struct {
164     uint8_t modifier;
165     uint8_t reserved;
166     uint8_t keycode[6];
167 } keyboard_report_t;
168
169 #define STATE_WAIT 0
170 #define STATE_SEND_KEY 1
171 #define STATE_RELEASE_KEY 2
172
173
174 static keyboard_report_t keyboard_report; // sent to PC
175 static uchar idleRate;           /* in 4 ms units */
176 static uchar key_state = STATE_WAIT;
177 volatile static uchar LED_state = 0xff; // received from PC
178 /* ------------------------------------------------------------------------- */
179
180 void buildReport(uchar send_key) {
181     keyboard_report.modifier = 0;
182
183     if(send_key >= 'a' && send_key <= 'z')
184         keyboard_report.keycode[0] = 4 + (send_key - 'a');
185     else
186         keyboard_report.keycode[0] = 0;
187 }
188
189 uint8_t read_button(void){
190         uint8_t t,v=0;
191         t = DDRB;
192         DDRB &= ~(1<<BUTTON_PIN);
193         PORTB |= 1<<BUTTON_PIN;
194         PORTB &= ~(1<<BUTTON_PIN);
195         v |= PINB;
196         DDRB |= t&(1<<BUTTON_PIN);
197         PORTB &= ~(t&(1<<BUTTON_PIN));
198         v >>= BUTTON_PIN;
199         v &= 1;
200         v ^= 1;
201         return v;
202 }
203
204 void init_temperature_sensor(void){
205         ADMUX = 0x8F;
206         ADCSRA = 0x87;
207 }
208
209 uint16_t read_temperture_sensor(void){
210         ADCSRA |= 0x40;
211         while(ADCSRA & 0x40)
212                 ;
213         return ADC;
214 }
215
216 usbMsgLen_t usbFunctionSetup(uchar data[8])
217 {
218         usbRequest_t    *rq = (usbRequest_t *)data;
219         if ((rq->bmRequestType & USBRQ_TYPE_MASK) == USBRQ_TYPE_CLASS) {    /* class request type */
220             switch(rq->bRequest) {
221         case USBRQ_HID_GET_REPORT: // send "no keys pressed" if asked here
222             // wValue: ReportType (highbyte), ReportID (lowbyte)
223             usbMsgPtr = (void *)&keyboard_report; // we only have this one
224             keyboard_report.modifier = 0;
225             keyboard_report.keycode[0] = 0;
226             return sizeof(keyboard_report);
227         case USBRQ_HID_SET_REPORT: // if wLength == 1, should be LED state
228             if (rq->wLength.word == 1) {
229                 current_command = LED_WRITE;
230                 return USB_NO_MSG;
231             }
232             return 0;
233         case USBRQ_HID_GET_IDLE: // send idle rate to PC as required by spec
234             usbMsgPtr = &idleRate;
235             return 1;
236         case USBRQ_HID_SET_IDLE: // save idle rate as required by spec
237             idleRate = rq->wValue.bytes[1];
238             return 0;
239         }
240     }
241     if ((rq->bmRequestType & USBRQ_TYPE_MASK) == USBRQ_TYPE_VENDOR) {
242                 current_command = rq->bRequest;
243         switch(rq->bRequest)
244                 {
245         case CUSTOM_RQ_PRESS_BUTTON:
246             key_state = STATE_SEND_KEY;
247             return 0;
248         case CUSTOM_RQ_CLR_DBG:
249             memset(dbg_buffer, 0, sizeof(dbg_buffer));
250             return 0;
251                 case CUSTOM_RQ_SET_DBG:
252                         return USB_NO_MSG;
253                 case CUSTOM_RQ_GET_DBG:{
254                         usbMsgLen_t len = 8;
255                         if(len > rq->wLength.word){
256                                 len = rq->wLength.word;
257                         }
258                         usbMsgPtr = dbg_buffer;
259                         return len;
260                 }
261                 case CUSTOM_RQ_READ_MEM:
262                         usbMsgPtr = (uchar*)rq->wValue.word;
263                         return rq->wLength.word;
264                 case CUSTOM_RQ_WRITE_MEM:
265                 case CUSTOM_RQ_EXEC_SPM:
266                         uni_buffer_fill = 4;
267                         uni_buffer.w16[0] = rq->wValue.word;
268                         uni_buffer.w16[1] = rq->wLength.word;
269                         return USB_NO_MSG;
270                 case CUSTOM_RQ_READ_FLASH:
271                         uni_buffer.w16[0] = rq->wValue.word;
272                         uni_buffer.w16[1] = rq->wLength.word;
273                         return USB_NO_MSG;
274                 case CUSTOM_RQ_RESET:
275                         soft_reset((uint8_t)(rq->wValue.word));
276                         break;
277                 case CUSTOM_RQ_READ_BUTTON:
278                         uni_buffer.w8[0] = read_button();
279                         usbMsgPtr = uni_buffer.w8;
280                         return 1;
281                 case CUSTOM_RQ_READ_TMPSENS:
282                         uni_buffer.w16[0] = read_temperture_sensor();
283                         usbMsgPtr = uni_buffer.w8;
284                         return 2;
285                 }
286     }
287
288     return 0;   /* default for not implemented requests: return no data back to host */
289 }
290
291
292 uchar usbFunctionWrite(uchar *data, uchar len)
293 {
294         switch(current_command){
295
296         case LED_WRITE:
297             if (data[0] != LED_state)
298                 LED_state = data[0];
299             return 1; // Data read, not expecting more
300         case CUSTOM_RQ_SET_DBG:
301                 if(len > sizeof(dbg_buffer)){
302                         len = sizeof(dbg_buffer);
303                 }
304                 memcpy(dbg_buffer, data, len);
305                 return 1;
306         case CUSTOM_RQ_WRITE_MEM:
307                 memcpy(uni_buffer.ptr[0], data, len);
308                 uni_buffer.w16[0] += len;
309                 return !(uni_buffer.w16[1] -= len);
310         case CUSTOM_RQ_EXEC_SPM:
311                 if(uni_buffer_fill < 8){
312                         uint8_t l = 8 - uni_buffer_fill;
313                         if(len<l){
314                                 len = l;
315                         }
316                         memcpy(&(uni_buffer.w8[uni_buffer_fill]), data, len);
317                         uni_buffer_fill += len;
318                         return 0;
319                 }
320                 uni_buffer.w16[1] -= len;
321                 if (uni_buffer.w16[1] > 8) {
322                         memcpy(uni_buffer.ptr[0], data, len);
323                         uni_buffer.w16[0] += len;
324                         return 0;
325                 } else {
326                         memcpy(&(uni_buffer.w8[uni_buffer_fill]), data, len);
327                         exec_spm(uni_buffer.w16[2], uni_buffer.w16[3], uni_buffer.ptr[0], data, len);
328                         return 1;
329                 }
330         default:
331                 return 1;
332         }
333         return 0;
334 }
335 uchar usbFunctionRead(uchar *data, uchar len){
336         uchar ret = len;
337         switch(current_command){
338         case CUSTOM_RQ_READ_FLASH:
339                 while(len--){
340                         *data++ = pgm_read_byte((uni_buffer.w16[0])++);
341                 }
342                 return ret;
343         default:
344                 break;
345         }
346         return 0;
347 }
348
349 static void calibrateOscillator(void)
350 {
351 uchar       step = 128;
352 uchar       trialValue = 0, optimumValue;
353 int         x, optimumDev, targetValue = (unsigned)(1499 * (double)F_CPU / 10.5e6 + 0.5);
354  
355     /* do a binary search: */
356     do {
357         OSCCAL = trialValue + step;
358         x = usbMeasureFrameLength();    // proportional to current real frequency
359         if(x < targetValue)             // frequency still too low
360             trialValue += step;
361         step >>= 1;
362     } while(step > 0);
363     /* We have a precision of +/- 1 for optimum OSCCAL here */
364     /* now do a neighborhood search for optimum value */
365     optimumValue = trialValue;
366     optimumDev = x; // this is certainly far away from optimum
367     for (OSCCAL = trialValue - 1; OSCCAL <= trialValue + 1; OSCCAL++){
368         x = usbMeasureFrameLength() - targetValue;
369         if (x < 0)
370             x = -x;
371         if (x < optimumDev) {
372             optimumDev = x;
373             optimumValue = OSCCAL;
374         }
375     }
376     OSCCAL = optimumValue;
377 }
378  
379
380 void usbEventResetReady(void)
381 {
382     cli();  // usbMeasureFrameLength() counts CPU cycles, so disable interrupts.
383     calibrateOscillator();
384     sei();
385 // we never read the value from eeprom so this causes only degradation of eeprom
386 //    eeprom_write_byte(0, OSCCAL);   // store the calibrated value in EEPROM
387 }
388
389 /* ------------------------------------------------------------------------- */
390
391 int main(void)
392 {
393         uchar   i;
394
395     wdt_enable(WDTO_1S);
396     /* Even if you don't use the watchdog, turn it off here. On newer devices,
397      * the status of the watchdog (on/off, period) is PRESERVED OVER RESET!
398      */
399     /* RESET status: all port bits are inputs without pull-up.
400      * That's the way we need D+ and D-. Therefore we don't need any
401      * additional hardware initialization.
402      */
403
404     memset(&keyboard_report, 0, sizeof(keyboard_report));
405
406     init_temperature_sensor();
407     usbInit();
408     usbDeviceDisconnect();  /* enforce re-enumeration, do this while interrupts are disabled! */
409     i = 0;
410     while(--i){             /* fake USB disconnect for ~512 ms */
411         wdt_reset();
412         _delay_ms(2);
413     }
414     usbDeviceConnect();
415     LED_PORT_DDR |= _BV(R_BIT) | _BV(G_BIT) | _BV(B_BIT);   /* make the LED bit an output */
416
417         
418     sei();
419
420     for(;;){                /* main event loop */
421         //      update_pwm();
422                 
423         wdt_reset();
424         usbPoll();
425
426         if(usbInterruptIsReady() && key_state != STATE_WAIT){
427             switch(key_state) {
428             case STATE_SEND_KEY:
429                 buildReport('x');
430                 key_state = STATE_RELEASE_KEY; // release next
431                 break;
432             case STATE_RELEASE_KEY:
433                 buildReport(0);
434             default:
435                 key_state = STATE_WAIT; // should not happen
436             }
437                         // start sending
438             usbSetInterrupt((void *)&keyboard_report, sizeof(keyboard_report));
439
440         }
441
442     }
443     return 0;
444 }
445
446 /* ------------------------------------------------------------------------- */